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Abstract. Optical computing provides unique opportunities in terms of parallelization, scalability, power
efficiency, and computational speed and has attracted major interest for machine learning. Diffractive deep
neural networks have been introduced earlier as an optical machine learning framework that uses task-specific
diffractive surfaces designed by deep learning to all-optically perform inference, achieving promising
performance for object classification and imaging. We demonstrate systematic improvements in diffractive
optical neural networks, based on a differential measurement technique that mitigates the strict nonnegativity
constraint of light intensity. In this differential detection scheme, each class is assigned to a separate pair of
detectors, behind a diffractive optical network, and the class inference is made by maximizing the normalized
signal difference between the photodetector pairs. Using this differential detection scheme, involving 10
photodetector pairs behind 5 diffractive layers with a total of 0.2 million neurons, we numerically achieved
blind testing accuracies of 98.54%, 90.54%, and 48.51% for MNIST, Fashion-MNIST, and grayscale
CIFAR-10 datasets, respectively. Moreover, by utilizing the inherent parallelization capability of optical
systems, we reduced the cross-talk and optical signal coupling between the positive and negative
detectors of each class by dividing the optical path into two jointly trained diffractive neural networks that
work in parallel. We further made use of this parallelization approach and divided individual classes in a
target dataset among multiple jointly trained diffractive neural networks. Using this class-specific
differential detection in jointly optimized diffractive neural networks that operate in parallel, our simulations
achieved blind testing accuracies of 98.52%, 91.48%, and 50.82% for MNIST, Fashion-MNIST, and
grayscale CIFAR-10 datasets, respectively, coming close to the performance of some of the earlier
generations of all-electronic deep neural networks, e.g., LeNet, which achieves classification accuracies of
98.77%, 90.27%, and 55.21% corresponding to the same datasets, respectively. In addition to these
jointly optimized diffractive neural networks, we also independently optimized multiple diffractive networks
and utilized them in a way that is similar to ensemble methods practiced in machine learning; using 3
independently optimized differential diffractive neural networks that optically project their light onto a
common output/detector plane, we numerically achieved blind testing accuracies of 98.59%, 91.06%, and
51.44% for MNIST, Fashion-MNIST, and grayscale CIFAR-10 datasets, respectively. Through these
systematic advances in designing diffractive neural networks, the reported classification accuracies set
the state of the art for all-optical neural network design. The presented framework might be useful to bring
optical neural network-based low power solutions for various machine learning applications and help us
design new computational cameras that are task-specific.
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1 Introduction
Machine learning, and in particular deep learning, has drasti-
cally impacted the area of information and data processing in
recent years.1–5 Research on optical machine learning has a very
rich history,6–12 due to its advantages in terms of power effi-
ciency, scalability, computational capacity, and speed. With
today’s substantial computational power, advances in manufac-
turing technologies [e.g., three-dimensional (3-D) printing and
lithography], and increasing availability of machine learning-
related programming tools (e.g., TensorFlow), there has been
remarkable progress on the use of machine learning in optics
and photonics, focusing on, e.g., the development of new inte-
grated photonics devices13–24 or the design of application-spe-
cific free-space optical neural networks.25–27

The task of object recognition and classification is an impor-
tant application area of machine learning. It is conventionally
realized in two main steps. First, a lens-based imaging system
followed by a CMOS/CCD array captures a scene at hand. The
digitized and stored image of the scene is then fed into an all-
electronic artificial neural network (ANN) pretrained for the
task. The sampling density, and thus the number of detectors
on the optoelectronic sensor plane, are dictated by the desired
spatial and/or temporal resolution of the designed system.28 In a
classification system, high spatial resolution is generally desired
due to the vital importance of spatial features for the perfor-
mance of ANNs, forcing the pixel count and density of the sen-
sor arrays to be relatively high, which, consequently, increases
the requirements on the size of the memory as well as the com-
putational power, inevitably hampering the effective frame-rate.
The compressive sensing/sampling field has broadly aimed to
overcome some of these resource inefficiencies in conventional
optical systems. However, computationally demanding recovery
algorithms associated with compressive sensing frameworks
partially hinder its application for a wide range of areas in need
of real-time operation.

In earlier work, we introduced diffractive deep neural net-
works,25,27 which are composed of successive diffractive optical
layers (transmissive and/or reflective), trained and designed us-
ing deep learning methods in a computer, and then physically
fabricated to all-optically perform statistical inference based on
the trained task at hand. In this framework, complex wave field
of a given scene or object, illuminated by a coherent light
source, propagates through the diffractive layers, which collec-
tively modulate the propagating light such that the intensity at
the output plane of the diffractive network is distributed in a
desired way; i.e., based on the specific classification or imaging
task of interest, these diffractive layers jointly determine the out-
put plane intensity in response to an input. The applications of
this concept for the design of optical imaging systems, as well as
all-optical object classification, were experimentally realized.25

Unlike traditional, imaging-based machine vision systems, a
diffractive optical neural network trained for a classification task
needs only a few optoelectronic detectors, as many as the num-
ber of individual classes in a given dataset. Following their de-
sign and fabrication, diffractive optical neural networks execute
classification with passive optical components, without the need
for any power except the illumination beam and a simple max
operation circuitry at the backend. Unless optical nonlinearities
are utilized, diffractive optical neural networks are linear in
nature, except the final optoelectronic detector plane; despite
its linearity, additional diffractive layers have been shown to

improve the generalization and inference performance of the
network, indicating the depth advantage that comes with the
increasing number of diffractive neural layers in the optical
network.25,27 With a single photodetector assigned to each indi-
vidual class of objects, Ref. 27 demonstrated a blind testing ac-
curacy of 97.18% for all-optical classification of handwritten
digits (MNIST database, where each digit was encoded in
the amplitude channel of the input) and achieved 89.13% for
all-optical classification of fashion-products (Fashion-MNIST
database, where each object was encoded in the phase channel
of the input).

In spite of the promising performance of the earlier work on
diffractive optical networks, these architectures suffer from a
well-known limitation in optics: the optoelectronic detectors are
only sensitive to the incident optical power rather than the com-
plex optical field, which limits the range of realizable values to
nonnegative real numbers. In this work, this nonnegativity of the
detected signal at the output plane of diffractive neural networks
is mitigated through a differential detection scheme, which em-
ploys two optoelectronic detectors per data class at the output
plane [see Fig. 1(b)]. In this differential detection scheme,
the output signal for each class is represented by the normalized
difference of the signals of the corresponding detector pair.
Therefore, half of the optoelectronic detectors are accounted
for in the positive part of the output signal, and the other half
represents the negative part. The final inference of the diffractive
optical network is simply made based on the maximum differ-
ential signal detected by these positive and negative detector
pairs, each representing a separate class. Using this differential
measurement scheme together with five diffractive layers having
a total of 0.2 million neurons, we numerically achieved blind
testing accuracies of 98.54%, 90.54%, and 48.51%, for MNIST,
Fashion-MNIST, and grayscale CIFAR-10 datasets, respectively
(see Fig. 2 and Table 1). For comparison, without using the dif-
ferential detection scheme, similar diffractive optical neural net-
works achieve blind testing accuracies of 97.51%, 89.85%, and
45.20% for the same datasets, respectively.

In addition to the introduction of differential detection per
class, in this work, we also made use of parallel computation
capability of passive diffractive layers, and jointly optimized
separate diffractive optical neural networks for positive and neg-
ative detectors (see e.g., Fig. 3), which are designed to work in
parallel for differential inference of data classes. In some other
implementations, we jointly optimized a group of diffractive op-
tical networks, where each diffractive network was specialized
to infer a subset of classes (see e.g., Fig. 4). Our results dem-
onstrate the significant advantages of these design strategies that
use a combination of differential detection and class-specific op-
timization of individual diffractive neural networks that work
all in parallel. For example, with class-specific differential dif-
fractive optical neural networks that are jointly optimized, we
numerically achieved blind testing accuracies of 98.52%,
91.48%, and 50.82% for MNIST, Fashion-MNIST, and gray-
scale CIFAR-10 datasets, respectively, coming close to the
inference performance of, e.g., LeNet, an all-electronic deep
neural network. Apart from these jointly optimized diffractive
neural networks, we also designed independently optimized
multiple diffractive neural networks, inspired by ensemble
methods used in deep learning. For example, using three inde-
pendently optimized differential diffractive neural networks
that separately project their diffracted light onto a common out-
put/detector plane, we numerically achieved blind testing
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accuracies of 98.59%, 91.06%, and 51.44% for MNIST,
Fashion-MNIST, and grayscale CIFAR-10 datasets, respec-
tively.

Because of the passive nature of diffractive neural networks,
at the cost of optical set-up alignment complexity as well as il-
lumination power increase, one can create scalable, low-power,
and competitive solutions to perform optical computation and
machine learning through these jointly optimized diffractive
neural network systems.

2 Results and Discussion
Figure 1 shows the examples of the input–output plane configu-
rations for various diffractive neural network designs investi-
gated and compared in this manuscript. For the sake of clarity,
we devised a notation to represent these different optical net-
work designs based on (1) the number of positive and negative

detectors at the output plane, (2) the number of jointly trained
but independent diffractive networks (i.e., there is no electro-
magnetic coupling among individual diffractive networks),
(3) the number of layers constituting each one of these individ-
ual diffractive neural networks, and (4) the number of neurons
at each diffractive layer of an individual optical network.
According to this notation, if a diffractive optical classifier
has Qþ positive detectors, Q− negative detectors at each output
plane of N jointly optimized diffractive networks, each of which
contains L layers with P neurons per layer, this optical classifier
design is denoted by Dð½Qþ; Q−�; ½N;L; P�Þ. If the Qþ positive
detectors and Q− negative detectors are not at the same diffrac-
tive network output plane, i.e., decoupled from each other by
distributing them to different optical neural networks, then
the total number of jointly optimized diffractive networks needs
to be doubled to 2 × N, where each network will either haveQþ
orQ− detectors at the corresponding output plane. To reflect such

Fig. 1 Illustration of different diffractive neural network design strategies. (a) Standard design re-
fers to Dð½M ; 0�; ½1; L;P �Þ, where M is the number of classes in the target dataset, which in this
specific design is also equal to the number of detectors per diffractive neural network, L is the
number of diffractive layers per optical network, and P refers to the number of neurons per dif-
fractive layer. In the examples shown in this figure, L ¼ 5, P ¼ 40k, meaning 0.2 million neurons in
total. (b) Differential design shown on the left refers to Dð½M ;M �; ½1; L;P �Þ, whereas the one on the
right refers to Dð½M �½M �; ½2; L;P �Þ as it uses two different jointly optimized diffractive networks,
separating the positive and the negative detectors by placing them at different output planes
without optical coupling between the two. (c) Class-specific design shown here refers to
Dð½M∕N ; 0�; ½N ; L;P �Þ, where N > 1 is the number of class subsets (in this example, N ¼ 2 case
is shown). (d) Class-specific differential design shown here refers to Dð½M∕N;M∕N�; ½N ; L;P �Þ
where N ¼ 2 is illustrated. In general, there can be another version of a class-specific differential
design where each diffractive neural network has only positive or negative detectors at the cor-
responding output plane; this special case is denoted with Dð½M∕N �½M∕N�; ½2N ; L;P �Þ, where
2N > 2 refers to the number of jointly designed diffractive neural networks. N ¼ 1 case, i.e.,
Dð½M �½M�; ½2; L;P �Þ is included as part of (b) right panel, and we do not consider it under the
class-specific neural network design since there is no class separation at the output/detector
planes.
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Fig. 2 Operation principles of a differential diffractive optical neural network. (a) Setup of the differ-
ential design, Dð½M ;M �; ½1;L;P �Þ. In the example shown in this figure, M ¼ 10, L ¼ 5, P ¼ 40k.
(b) A correctly classified test object from the MNIST dataset is shown. Subparts of (b) illustrate
the following: (i) target object placed at the input plane and illuminated by a uniform plane wave,
(ii) normalized intensity distribution observed at the output plane of the diffractive optical neural
network, (iii) normalized optical signal detected by the positive (red) and the negative (blue) de-
tectors, (iv) differential class scores computed according to Eq. (1) using the values in (iii). (c) and
(d) are the same as in (b), except for Fashion-MNIST and CIFAR-10 datasets, respectively. Note
that while the input object in (b) is modeled as an amplitude-encoded object, the gray levels shown
in (c) and (d) represent phase-encoded perfectly transparent input objects. Since diffractive optical
neural networks operate using coherent illumination, phase and/or amplitude channels of the input
plane can be used to represent information.
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a configuration, our notation is defined asDð½Qþ�½Q−�;½2N;L;P�Þ
where the brackets separating the number of positive and negative
detectors indicate that they are not placed on the same output
plane, but rather they follow different diffractive optical networks
that are all jointly optimized, but operate individually without op-
tical coupling from others. According to this notation, the standard
diffractive optical neural network architectures [Fig. 1(a)] used in,
e.g., Refs. 25 and 27 can be denoted as Dð½M;0�;½1;L;P�Þ for a
dataset with M classes (e.g., M ¼ 10 for MNIST). As another
example, for a dataset with M classes, a combination of class
division and differential detection can lead to 2 ×M jointly
trained diffractive neural networks, with a single detector at
the output plane of each diffractive network (corresponding
to either positive or negative portion of a class signal), and this
diffractive neural system is denoted, based on our notation,
as Dð½1�½1�; ½2M;L; P�Þ.

After the introduction of our notation to symbolize different
diffractive neural systems (D), we now focus on quantifying the
impact of some of these different designs on the inference and
generalization performance of a diffractive classifier. First, we
start our analysis by comparing the performance of standard dif-
fractive optical networks used earlier,25,27 where there is a single
optical network withM ¼ 10 detectors at the output plane [e.g.,
Dð½10; 0�; ½1; 5; 40k�Þ], against the performance of a differential
detection network with the same diffractive configuration, ex-
cept the output plane, i.e., Dð½10; 10�; ½1; 5; 40k�Þ. In Table 1,
first and second rows reveal that maximizing the normalized dif-
ferential signal for the target class improves the blind inference
accuracy of a diffractive optical network (composed of five dif-
fractive layers with a total of 0.2 million neurons) to 98.54%,
90.54%, and 48.51% for MNIST, Fashion-MNIST, and gray-
scale CIFAR-10 datasets, respectively, compared to the corre-
sponding accuracies achieved by Dð½10; 0�; ½1; 5; 40k�Þ, i.e.,
97.51%, 89.85%, and 45.20%, respectively. For a dataset with
M classes, this performance gain comes at the expense of a two-
fold increase in the number of optoelectronic detectors (2M in-
stead of M), together with the use of additional but simple
electronic read-out circuitry, composed of, e.g., M differential
amplifiers and normalization logic; this extra computation at
the output plane is rather straightforward, with a computational
complexity of OðMÞ.

When the optical path is divided into two as shown in
Fig. 3(a), we further increase the number of degrees of freedom

of the diffractive neural system and decouple the optical signals
detected by the positive and negative detector pairs; as a result of
this, the blind testing accuracy of Dð½10�½10�; ½2; 5; 40k�Þ shown
in Fig. 3(a) increases further to 90.94% and 49.10% for Fashion-
MNIST and CIFAR-10 datasets, respectively, as shown in the
last row of Table 1. For MNIST dataset, on the other hand,
the average performance of Dð½10�½10�; ½2; 5; 40k�Þ remains ap-
proximately at the same level asDð½10; 10�; ½1; 5; 40k�Þ architec-
ture, i.e., 98.49% versus 98.54%, respectively.

Table 2 summarizes our results on an alternative diffractive
classifier design strategy: we jointly trained a group of diffrac-
tive neural networks, where each one of them specialized on
a subgroup of classes, and the optoelectronic detectors were
placed at the output plane of the corresponding network. For
example, as part of this design strategy, Dð½2; 0�; ½5; 5; 40k�Þ
of Table 2 refers to a diffractive neural system that is composed
of five jointly trained diffractive neural networks, each having
five diffractive layers (40k neurons per layer) and two detectors
are placed at the corresponding output plane, where each detec-
tor represents one class of the dataset. Each one of these five
diffractive neural networks is jointly optimized together with
the others but does not have any optical coupling from the other
networks. Based on our comparative analysis reported in Table 2
(nondifferential row), the best performance among the nondif-
ferential diffractive designs is achieved when each diffractive
optical network of a neural system specializes on only one class:
Dð½1; 0�; ½10; 5; 40k�Þ achieved blind testing accuracies of
97.61%, 90.34%, and 48.02%, for MNIST, Fashion-MNIST,
and grayscale CIFAR-10 datasets, respectively. The same con-
clusion regarding the success of class-specific diffractive neural
networks also holds for differential detection strategy; Table 2
(differential rows) reports that Dð½1; 1�; ½10; 5; 40k�Þ and
Dð½1�½1�; ½20; 5; 40k�Þ achieved the winner performance in this
comparison for each differential row, with blind testing accura-
cies of 98.59% (98.52%), 91.37% (91.48%), and 50.09%
(50.82%), for MNIST, Fashion-MNIST, and grayscale CIFAR-
10 datasets, respectively, where the values in parentheses refer
to the performance of Dð½1�½1�; ½20; 5; 40k�Þ.

A direct comparison between the “differential” and “nondif-
ferential rows of Table 2 further emphasizes the importance of
the differential detection scheme. Not only the differential dif-
fractive network designs show significantly better performance
compared to their nondifferential counterparts when the number
of neurons and the number of diffractive layers are the same but
also even Dð½1; 0�; ½10; 5; 40k�Þ architecture with 2 million neu-
rons in total cannot outperform Dð½10; 10�; ½1; 5; 40k�Þ that has
0.2 million neurons in total, despite having 10 times more number
of neurons in the diffractive classifier design.

Figure 5 shows the general conclusions that are revealed by
our analysis: (1) differential diffractive neural systems outper-
form their nondifferential counterparts; (2) diffractive neural
networks that subspecialize on a single class as part of a neural
system outperform their counterparts that specialize on multiple
classes per diffractive network; and (3) the combination of both
design strategies, i.e., class-specific differential detection outper-
forms other counterpart diffractive neural system designs. These
mean that for a dataset with M classes, Dð½1�½1�; ½2M;L; P�Þ
would be a winner design, with L diffractive layers per class-
specific optical network, and P neurons per diffractive layer
(see Tables 2 and 3). For example, Table 2 reports that, for
MNIST, Fashion-MNIST, and grayscale CIFAR-10 datasets,
Dð½1�½1�; ½2M ¼ 20; 5; 40k�Þ design achieves blind testing

Table 1 Blind testing classification accuracies of nondifferential
(top row) and differential diffractive optical networks, without any
class specificity or division. M ¼ 10 classes exist for each data-
set: MNIST, Fashion MNIST, and gray-scaled CIFAR-10. For
each data point, the training of the corresponding diffractive op-
tical neural network model was independently repeated six times
with random initial phase modulation variables and random batch
sequences; therefore, each data point reflects the mean blind
testing accuracy of these six trained networks, also showing
the corresponding standard deviation.

Architecture MNIST Fashion
CIFAR-10
(grayscale)

Dð½10,0�; ½1, 5; 40k�Þ 97.51� 0.03 89.85� 0.18 45.20� 0.35

Dð½10,10�; ½1, 5; 40k�Þ 98.54� 0.03 90.54� 0.16 48.51� 0.30

Dð½10�½10�; ½2, 5; 40k�Þ 98.49� 0.03 90.94� 0.16 49.10� 0.30
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Fig. 3 Operation principles of a diffractive optical neural network using differential detection
scheme, where the positive and the negative detectors are split into two jointly optimized networks
based on their sign. (a) Setup of the differential design,Dð½M �½M �; ½2; L;P �Þ. In the example shown in
this figure, M ¼ 10, L ¼ 5, P ¼ 40k. (b) A correctly classified test object from the MNIST dataset is
shown. Subparts of (b) illustrate the following: (i) target object placed at the input plane and illumi-
nated by a uniform plane wave, (ii) normalized intensity distribution observed at the output plane of
the diffractive optical neural network, (iii) normalized optical signal detected by the positive (red) and
the negative (blue) detectors, (iv) differential class scores computed according Eq. (1) using the
values in (iii). (c) and (d) are the same as in (b), except for Fashion-MNIST and CIFAR-10 datasets,
respectively. Note that while the input object in (b) is modeled as an amplitude-encoded object, the
gray levels shown in (c) and (d) represent phase-encoded perfectly transparent input objects.
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Fig. 4 Operation principles of a diffractive optical neural network using class-specific detection
scheme, where the individual class detectors are split into separate networks based on their
classes. Unlike Figs. 2 and 3, there are no negative detectors in this design. (a) Setup of the
class-specific design, Dð½M∕2,0�; ½2; L;P �Þ. In the example shown in this figure, M ¼ 10, L ¼ 5,
P ¼ 40k. (b) A correctly classified test object from the MNIST dataset is shown. Subparts of (b) il-
lustrate the following: (i) target object placed at the input plane and illuminated by a uniform plane
wave, (ii) normalized intensity distribution observed at the two output planes of the diffractive op-
tical neural networks, (iii) normalized optical signal detected by the detectors. (c) and (d) are the
same as in (b), except for Fashion-MNIST and CIFAR-10 datasets, respectively. Note that while
the input object in (b) is modeled as an amplitude-encoded object, the gray levels shown in (c) and
(d) represent phase-encoded perfectly transparent input objects.
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accuracies of 98.52%, 91.48%, and 50.82%, respectively; to the
best of our knowledge these values report the highest accuracy
levels achieved so far for an all-optical neural network design.

So far, in our differential diffractive neural network designs,
we considered balanced differential detection between the optical
signals of [Qþ] and [Q−], i.e., ½Qþ� − ½Q−�. To further explore if
this balanced differential detection is indeed an ideal choice, we
considered a more general case, where the two detectors of a pair
assigned to a class can be merged with arbitrary scaling factors,
pm and nm, respectively (m represents the class number). We can
generally denote this broader diffractive network design as
Dðpm½M∕N� nm½M∕N�; ½2N;L; P�Þ, where pm and nm can be
any real number that can vary from class to class. For example,
pm ¼ nm ¼ 1 refers to the standard balanced differential detec-
tion case considered so far, whereas pm ¼ 1, nm ¼ −1 refers to a

simple summation of the signals of the two detectors assigned
to class m. By treating pm and nm as additional independent
learnable parameters of a diffractive neural network,
Dðpm½M∕N� nm½M∕N�; ½2N;L; P�Þ, we trained different designs
that were initialized with random ðpm; nmÞ values, which quickly
converged to a solution with pm ≈ nm for each class of the cor-
responding dataset, proving empirically that a balanced differen-
tial detection is indeed preferred. We also noticed that the general
design Dðpm½M∕N�nm½M∕N�; ½2N;L; P�Þ with learnable detec-
tor coefficients did not improve our blind inference performance
compared to the case of pm ¼ nm ¼ 1.

Another method to benefit from the parallel computing
capability of passive diffractive neural networks is to create
independently optimized diffractive neural networks that opti-
cally project their diffracted light onto the same output/detector

Table 2 Blind testing classification accuracies of different class division architectures combined with nondifferential and differential
diffractive neural network designs. For each data point, the training of the corresponding diffractive optical neural network model
was independently repeated six times with random initial phase modulation variables and random batch sequences; therefore, each
data point reflects the mean blind testing accuracy of these six trained networks, also showing the corresponding standard deviation.

Type Architecture MNIST Fashion
CIFAR-10
(grayscale)

Class-specific nondifferential, Dð½M∕N; 0�; ½N; L;P �Þ, N > 1 Dð½5, 0�; ½2, 5; 40k�Þ 97.53� 0.08 90.19� 0.14 46.37� 0.35

Dð½2, 0�; ½5, 5; 40k�Þ 97.57� 0.07 90.14� 0.16 47.05� 0.16

Dð½1, 0�; ½10, 5; 40k�Þ 97.61� 0.08 90.34� 0.08 48.02� 0.70

Class-specific differential, Dð½M∕N;M∕N�; ½N ; L;P �Þ, N > 1 Dð½5, 5�; ½2, 5; 40k�Þ 98.50� 0.09 90.89� 0.24 49.09� 0.24

Dð½2, 2�; ½5, 5; 40k�Þ 98.57� 0.06 91.08� 0.25 49.68� 0.17

Dð½1, 1�; ½10, 5; 40k�Þ 98.59� 0.03 91.37� 0.19 50.09� 0.23

Class-specific differential, Dð½M∕N�½M∕N �; ½2N ; L;P �Þ, N > 1 Dð½5�½5�; ½4, 5; 40k�Þ 98.51� 0.08 91.04� 0.22 49.82� 0.38

Dð½2�½2�; ½10, 5; 40k�Þ 98.58� 0.06 91.36� 0.13 50.47� 0.63

Dð½1�½1�; ½20, 5; 40k�Þ 98.52� 0.05 91.48� 0.03 50.82� 0.26

Fig. 5 Performance comparison of different diffractive neural network systems as a function of N ,
the number of class subsets.M ¼ 10 classes exist for each dataset: MNIST, Fashion MNIST, and
grayscale CIFAR-10. Based on our notation, N ¼ M ¼ 10 refers to a jointly optimized diffractive
neural network system that specializes to each one of the classes separately. These results con-
firm that class-specific differential diffractive neural networks (Dð½M∕N �½M∕N �; ½2N; L;P �) forN > 1
outperform other counterpart diffractive neural network designs. For each data point, the training of
the corresponding diffractive optical neural network model was repeated six times with random
initial phase modulation variables and random batch sequences; therefore, each data point re-
flects the mean blind testing accuracy of these six trained networks, also showing the correspond-
ing standard deviation.
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plane. Unlike the jointly optimized diffractive neural systems
described earlier, here in this alternative design strategy we
select a diffractive network design, D, and independently opti-
mize replicas of this design, where each network separately
projects its diffracted pattern onto the same (i.e., common) de-
tector plane. Not to interfere with the inference results of each
diffractive neural network, here we considered intensity-only
summation of the optical signals of each diffractive network
at the common output plane, as opposed to coherent summation
of the diffracted fields, which could perturb the predictions of
each independent network due to constructive and destructive
interference at the output plane. This can easily be achieved
in a diffractive neural system by adjusting the relative optical
path length differences between the individual diffractive net-
works to be larger than the temporal coherence length imposed
by the bandwidth of the illumination source, ensuring that each
detector at the common output plane sums up the optical inten-
sities of all the individual diffractive neural networks. For each
diffractive network of the ensemble, coherent operation is still
maintained since the layer-to-layer separation in a given diffrac-
tive network is very small (e.g., 40λ for the designs considered
in this work).

This design strategy of using independently optimized dif-
fractive networks is in fact similar to ensemble methods32,33 that
are frequently used in machine learning literature. Figure 6
shows the blind testing accuracies achieved by this strategy
using either nondifferential or differential diffractive neural net-
works, i.e., Dð½10; 0�; ½1; 5; 40k�Þ or Dð½10; 10�; ½1; 5; 40k�Þ. For
example, using three independently optimized differential dif-
fractive neural networks that optically project their light onto
a common output plane with 10 detector pairs (one for each
class), we numerically achieved blind testing accuracies of
98.59%, 91.06%, and 51.44% for MNIST, Fashion-MNIST,
and grayscale CIFAR-10 datasets, respectively (see Fig. 6).
Further increasing the number of independently trained differ-
ential diffractive neural networks combined in an ensemble
system brings diminishing return to the inference performance
of the ensemble. For example, for CIFAR-10 dataset, optical
classifier models that are composed of 2, 3, and 5 independ-
ently optimized differential diffractive neural networks,
Dð½10; 10�; ½1; 5; 40k�Þ, achieve blind testing accuracies of
50.68%, 51.44%, and 51.82%, respectively. This diminishing

return behavior stems from the increasing correlation between
the output intensity distributions generated by the ensemble
model and an additional independently optimized diffractive
neural network (to be added to the ensemble).

After reporting the results of various different design strate-
gies for diffractive neural networks, in Table 3, we present a
quantitative comparison of diffractive neural systems against
some of the earlier hybrid (i.e., optical and electronic) neural
networks as well as some of the widely known all-electronic
machine learning models used in the literature. This comparison
once again highlights the importance of class-specific differen-
tial detection for improving the blind inference performance and
the generalization of diffractive neural network systems. For ex-
ample,Dð½1�½1�; ½20; 5; 40k�Þmatches the blind inference perfor-
mance of convolutional deep neural networks such as LeNet and
AlexNet for MNIST and Fashion-MNIST datasets and falls
short of the performance of LeNet for CIFAR-10 dataset only
by 4.39%. A similar conclusion can be drawn from Table 3 for
our comparison against the hybrid systems reported in Refs. 26
and 27.

While the presented systematic advances in diffractive neural
network designs have helped us achieve a competitive inference
performance, with classification accuracies that are among the
highest levels achieved so far for optical neural networks, there
is still a considerable performance gap with respect to the state-
of-the-art all-electronic deep learning models such as ResNet
(see e.g., Table 3, CIFAR-10 performance comparisons).
Despite its inferior performance compared to such all-electronic
deep learning models that set the state-of-the-art in machine
learning, class-specific differential diffractive neural networks
still present several important advantages in terms of scalabil-
ity, memory usage, computation speed, and power efficiency
since the main computation occurs all-optically and at the
speed of light through diffraction within passive optical layers
without the need for external power, except for the illumination
light and a few detectors and related circuitry at the network
output. Having underlined these important advantages, we
should also note that significantly higher classification accu-
racies of state-of-the-art electronic deep neural networks
such as ResNet once again emphasize the vital role of multi-
channel convolutional layers and nonlinearity inherent in
these networks; as discussed in earlier work,25,27 the use of

Table 3 Comparison of blind testing accuracies of different types of neural networks, including optical, hybrid, and electronic.

Type Network architecture MNIST (%) Fashion (%) CIFAR-10 (%)

Optical (diffractive) Standard design Dð½10; 0�; ½1; 5; 40k�Þ 97.51� 0.03 89.85� 0.18 45.20� 0.35

Differential design Dð½10; 10�; ½1; 5; 40k�Þ 98.54� 0.03 90.54� 0.16 48.51� 0.30

Ensemble of 3 differential designs Dð½10; 10�; ½1; 5; 40k�Þ 98.59 91.06 51.44

Class-specific differential design Dð½1; 1�; ½10; 5; 40k�Þ 98.59� 0.03 91.37� 0.19 50.24� 0.17

Class-specific differential design Dð½1�½1�; ½20; 5; 40k�Þ 98.52� 0.05 91.48� 0.03 50.82� 0.26

Hybrid (optical +
electronic)

Ref. 27 98.97 90.45 —

Ref. 26 — — 51.00� 1.40

Electronic SVM29 91.90 83.20 37.13

LeNet30 98.77 90.27 55.21

AlexNet2 99.20 89.90 72.14

ResNet31 99.51 93.23 88.78
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nonlinear optical materials or optical resonances in diffractive
neural networks can potentially improve the inference capa-
bilities of diffractive neural systems beyond the currently pre-
sented results. Our results also reinforce an earlier conclusion
regarding diffractive optical neural networks: their inference
and generalization capabilities improve with additional diffrac-
tive layers jointly designed and optimized by gradient-based
learning, which illustrates the depth feature of diffractive
neural systems, even if there is no nonlinear optical material
being employed per layer. Stated differently, the general
family of functions represented in this work through
Dð½M∕N;M∕N�; ½N;L;P�Þ or Dð½M∕N�½M∕N�; ½2N;L;P�Þ can-
not be covered by a single diffractive optical layer, no matter
how many neurons are employed.

Finally, we would like to also emphasize that these reported
advances in the inference and generalization performance of
class-specific differential diffractive neural networks come at
the cost of a requirement to increase the input illumination
power. For example, to keep the signal-to-noise ratio (SNR)
of each photodetector that is positioned at an output plane of
a class-specific differential diffractive neural network system,
(e.g., Dð½M∕N;M∕N�; ½N;L; P�Þ) at the same level as the
SNR of the photodetectors of a standard diffractive neural net-
work (i.e., Dð½M; 0�; ½1; L; P�Þ), the optical power of the input
illumination beam must be increased by approximately N fold;
the exact comparison is dataset and task dependent and is ac-
tually governed by the photon efficiencies of different diffrac-
tive networks that make up of Dð½M∕N;M∕N�; ½N;L; P�Þ.
However, if N is increased to M (e.g., M ¼ 10 for the datasets
considered in this work), this means each diffractive network
unit that is part ofDð½M∕N;M∕N�; ½N;L; P�Þ has only two pho-
todetectors at the corresponding output plane, whereas the stan-
dard diffractive neural network, Dð½M; 0�; ½1; L; P�Þ, has
M ¼ 10 photodetectors. Therefore, if we include in the training
phase of the diffractive neural system a photon efficiency loss
term for the photodetectors of Dð½M∕N;M∕N�; ½N;L; P�Þ,
penalizing poor diffraction efficiency per detector, one can po-
tentially reduce this N-fold illumination power penalty by

making class-specific networks more photon efficient as they
deal with much smaller number of photodetectors at their out-
put. To list another disadvantage of class-specific differential
diffractive neural networks, because of their increased parallel-
ism the complexity of the fabrication and alignment of the op-
tical neural network set-up would be more complicated, and the
overall size of the diffractive neural system would be increased
compared to a single standard diffractive neural network.
However, these are challenges that can be mitigated with 3-D
integrated photonic systems fabricated through, e.g., lithogra-
phy, and the need for increased optical illumination power is
in general not a major concern due to various high-power lasers
commonly available in different formats, including portable
systems.

3 Methods

3.1 Physical Parameters of Diffractive Optical Neural
Networks

The physical model of wave propagation, used in the forward
model of diffractive neural networks, was formulated based on
the Rayleigh–Sommerfeld diffraction equation and digitally
implemented, using a computer, based on the angular spectrum
method.25 According to this model, the neurons constituting the
diffractive layers of an optical network can be interpreted as
sources of modulated secondary waves.25 Assuming an illumi-
nation wavelength of λ, each neuron provides an adequately
wide diffraction cone enabling communication with all the neu-
rons of the consecutive layer, provided that the size of each neu-
ron is taken as ∼0.5λ and the distances between the diffractive
layers are set to be ∼40λ. Diffractive optical neural networks
designed based on these predetermined (nontrainable) parame-
ters are considered as fully connected optical networks. All the
diffractive optical neural networks presented in this paper were
designed using this set of parameters (see Ref. 27 for further
details and a comparison of design parameters of diffractive
optical classifiers). In addition, the shape and size of each

Fig. 6 The comparison between the classification accuracies of ensemble models formed by 1, 2,
and 3 independently optimized diffractive neural networks that optically project their diffracted light
onto the same output/detector plane. Blue and orange curves represent Dð½10, 0�; ½1, 5; 40k�Þ and
Dð½10; 10�; ½1; 5; 40k�Þ designs, respectively. (a) MNIST, (b) Fashion-MNIST, and (c) grayscale
CIFAR-10. Not to perturb the inference results of each diffractive network due to constructive/de-
structive interference of light, incoherent summation of the optical signals of each diffractive net-
work at the common output plane is considered here, which can be achieved by adjusting the
relative optical path length differences between the individual diffractive networks to be larger than
the temporal coherence length of the illumination source.
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photodetector at a given output plane of a diffractive network
were also fixed: we assumed square photodetectors, each with
a width of 6.4λ. The form of the illumination, incident on the
target objects, is assumed to be a uniform plane wave generated
by a coherent light source and propagating parallel to the optical
axis of the diffractive layers. According to our forward model,
this incoming wave is modulated by an object at the input plane
creating the complex wave field impinging on the first layer of a
diffractive optical neural network after free-space propagation.
The object functions of handwritten digits (MNIST dataset)
were modeled as amplitude-only transmissive objects taking
values between 0 (no transmission) and 1 (full transmission).
The samples of Fashion-MNIST and CIFAR-10 datasets, on
the other hand, were assumed to represent the phase channels
of the transparent objects (unit amplitude transmission at every
point), modulating only the phase of the input beam while pre-
serving the amplitude distribution.

In our diffractive neural system and classifier designs, five
fully connected diffractive layers [phase-only modulation with
each layer having 40k (200 × 200) neurons] were taken as
building blocks. Although, our framework can be applied for
the design of diffractive layers capable of modulating both
the amplitude and phase of an incoming wave,27 fabrication
of phase-only layers, in general, is preferable in terms of fab-
rication complexity and yield. Hence, the trainable parameter
space for the diffractive optical classifiers investigated in this
work contains only a phase modulation variable per neuron, re-
sulting in a total of 0.2 million trainable variables for a five-layer
diffractive optical network, which constitutes the building block
of the presented diffractive neural systems,D. For training of the
diffractive optical neural networks reported in this work, the
phase modulation parameter of each neuron was initialized as
a Gaussian random variable with zero mean and 0.2π standard
deviation.

3.2 Implementation of Differential Diffractive Optical
Neural Networks

Our differential detection model, in the context of diffractive
optical classification systems, defines the class scores based
on normalized differences between the positive and the negative
detector signals at the output plane(s). With a pair of detectors
assigned per class (a positive and a negative detectors), the nor-
malized difference for class m, is computed as

Im;out ¼
Im;þ − Im;−
Im;þ þ Im;−

; (1)

where Im;þ and Im;− stand for the optical signal of the positive
and the negative detectors of class m, respectively. Due to scale-
variant operation of the softmax function,34,35 the class scores
(I0m;out) were defined as the scaled versions of normalized
differences in Eq. (1) according to

I0m;out ¼ Im;out∕T; (2)

where T denotes a multiplicative scaling factor (also referred to
as the “temperature” hyperparameter in machine learning liter-
ature), and I0m;out is the class score of class m. For the results
presented in this paper, T was set as 0.1, determined based
on empirical observations. It is important to note that the sole
purpose of Eq. (2) is to improve the speed of convergence of

diffractive neural network optimization during the training
phase and the blind testing classification performance of the fi-
nal model.34,35 Therefore, when the softmax function is replaced
with a max operation in the validation and testing processes,
Eq. (2) is no longer used as part of our forward model
and the blind prediction is solely made based on the output
of Eq. (1).

The differential measurement technique is implemented us-
ing two different design approaches. In the first model, the pos-
itive and negative detectors representing a class are placed
on the same output plane after a diffractive neural network,
i.e., Dð½M∕N;M∕N�; ½N;L; P�Þ. The second architecture,
Dð½M∕N�½M∕N�; ½2N;L; P�Þ, is composed of 2N diffractive op-
tical neural networks that independently control the light inten-
sity detected by the positive and negative detectors assigned for
different classes. Despite joint-optimization of the diffractive
neural networks in these models, it was assumed that the dif-
fractive networks are optically isolated from each other, mean-
ing that the optical waves propagating through different
diffractive neural networks do not interfere with each other.

Note that when T is set to be exponentially growing as a
function of the number of epochs during the training phase,
we observed a slightly better inference performance for
Dð½M∕N;M∕N�; ½N;L; P�Þ architecture. For example, in the
case of Dð½10, 10�; ½1, 5; 40k�Þ when T was initialized as 0.1
and increased every 25 epochs by a multiplicative factor of e
(e.g., at 50th epoch, T ¼ 0.1 × e2), the blind testing accuracy
achieved for CIFAR-10 dataset improved from 48.51% to
49.36%.

3.3 Class-Specific Diffractive Neural Networks

Division of elements of a target dataset into smaller sets based
on their class labels was used to improve the inference perfor-
mance of diffractive neural networks. In the training of class-
specific diffractive neural networks, the target dataset was di-
vided into subgroups of classes and these subgroups were split
among parallel, simultaneously optimized diffractive neural net-
works. Although, these diffractive networks were trained simul-
taneously, the optical waves modulated by each network were
assumed to be isolated from other diffractive networks of the
same neural system, D. If used without the differential measure-
ment scheme described earlier, the class-scores were directly
calculated by the normalized signals of individual detectors
placed at the output planes of the corresponding diffractive net-
works using

I0m;out ¼
Im

maxðImÞ × T
; (3)

where Im denotes the optical signal of the detector assigned to
class m, maxðImÞ refers to the maximum optical signal among
all the detectors, and T is a nonlearnable hyperparameter used
only during the training phase. For the designs presented in this
work, T ¼ 0.1 was selected empirically to improve the conver-
gence speed and accuracy of the final model. As in the case of
Eq. (2), once the joint-training of class-specific diffractive net-
works was completed, Eq. (3) was no longer used and the class
predictions during the validation as well as blind testing stages
were determined by selecting the maximum of the detected op-
tical signals. When the class-specific diffractive neural networks
were combined with the differential measurement method,
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Eq. (3) was accordingly replaced with the normalized signal dif-
ference calculation shown in Eq. (1) and the subsequent class
score definition given in Eq. (2).

3.4 Ensemble of Diffractive Optical Neural Networks

Bagging32 and ensemble33,36 methods are commonly used in ma-
chine learning literature to create multiclassifier systems that
have superior performance compared to each individual unit
constituting them. In these systems, the class scores coming
from individual classifier units are merged into a single vector
by means of arithmetic or geometric averaging or by using ma-
jority voting schemes. Similarly, we used independently opti-
mized diffractive neural networks forming an ensemble and
assumed that the diffracted optical signal from each optical net-
work is superimposed with the diffracted light of the other net-
works on the same (i.e., common) output plane, containing the
photodetectors. Assuming that the relative optical path length
difference between any two diffractive networks of the ensem-
ble is longer than the temporal coherence length of the illumi-
nation beam, the detectors at the output plane incoherently add
up the light intensities generated by the independent diffractive
networks. Apart from coherence engineering, an alternative op-
tion could be to sequentially measure the detector signals at the
common output plane, one diffractive network at a given time,
and digitally combine the class scores after the measurements.
Both of these approaches (simultaneous incoherent summation
of the projected light intensities at the common output plane
versus sequential capture of each diffractive network’s output
at the common detector plane and averaging of the class scores)
achieved the same inference performance. To evaluate the per-
formance of an ensemble of diffractive optical neural networks,
we trained multiple replicas of a diffractive classifier design, D,
by randomly changing the batch sequences and the initial phase
modulation parameters of the diffractive layers for each replica.
After every epoch, the corresponding model of each diffractive
classifier unit was saved. When the training of all the individual
units was finished, the best ensemble combination was selected
based on their collaborative classification accuracy calculated
using the validation dataset, and the blind classification accura-
cies provided by these best combinations on the testing dataset
were presented in Sec. 2.

The training strategy of setting T in Eq. (2) to be an expo-
nentially growing parameter as a function of the number of
epochs was also tested in the context of ensemble models.
For example, a three-unit ensemble model, where each individ-
ual differential diffractive network was trained using an expo-
nentially growing T, achieved 50.86% blind testing accuracy,
which is lower compared to 51.44% testing accuracy provided
by the ensemble of three independently optimized networks
trained with a constant T ¼ 0.1. A similar behavior was also
observed for two-unit ensemble models.

3.5 Details of Model Training

Object classification performances of all the models presented
in this paper were trained and tested on three widely used data-
sets: MNIST, Fashion-MNIST, and CIFAR-10. For MNIST and
Fashion-MNIST datasets, 55,000 samples were used as training
data while the remaining 15,000 objects were divided into two
sets of 5000 and 10,000 for validation and testing, respectively.
The CIFAR-10 dataset was partitioned into three sets of 45,000,
5000, and 10,000 samples, used for training, validation, and

testing of our diffractive neural networks, respectively. Since
the samples of CIFAR-10 dataset contain three color channels
(red, green, and blue), they were converted to grayscale using
the built-in rgb_to_grayscale function in TensorFlow to comply
with the monochromatic (or quasimonochromatic) illumination
used in our diffractive network models.

Softmax cross-entropy was used as the loss function for all
the neural network models (optical or electronic) presented in
this work. With I0m;out denoting the class score of m’th class,
the classification loss can be computed as

Loss ¼ −XM

m¼1

gm logðcmÞ; (4)

where M, cm, and gm denote (1) the total number of classes in a
given dataset, (2) the probability of an input being a member of

class m according to softmax function,
expðI0m;outÞP
M
m¼1

expðI0m;outÞ
, and

(3) the m’th entry of the ground truth label vector, respectively.
All the neural networks in this paper (optical or electronic)

were simulated using Python (v3.6.5) and Google TensorFlow
(v1.10.0) frameworks. An Adam optimizer was used37 during
the training of all models. The parameters of the Adam opti-
mizer were kept identical between each model and taken as
the default values in the TensorFlow implementation. The learn-
ing rate was initially set as 0.001, but an exponential decay was
applied in every eight epochs such that the new learning rate
equals 0.7 times the previous one. All the models were trained
for 50 epochs and the best model was selected based on the clas-
sification performance on the validation set. For each model, the
training was independently repeated six times with random
batch sequences and initial phase modulation variables.
Throughout this paper, our blind testing accuracy for each dif-
fractive neural network design reports the mean value over these
six repetitions, applied to testing datasets. For the training of our
models, we used a desktop computer with an NVIDIA GeForce
GTX 1080 Ti graphical processing unit (GPU) and Intel Core
(TM) i7-7700 CPU @3.60 GHz and 16 GB of RAM, running
Microsoft Windows 10 operating system. The typical training
time of the diffractive neural network shown in Fig. 2(a) is
∼6 h. For computationally more demanding architectures such
as Dð½1, 1�; ½10, 5; 40k�Þ and Dð½1�½1�; ½20, 5; 40k�Þ, the training
time increased to ∼26 and ∼46 h, respectively.
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